If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-2x-363=0
a = 1; b = -2; c = -363;
Δ = b2-4ac
Δ = -22-4·1·(-363)
Δ = 1456
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1456}=\sqrt{16*91}=\sqrt{16}*\sqrt{91}=4\sqrt{91}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-4\sqrt{91}}{2*1}=\frac{2-4\sqrt{91}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+4\sqrt{91}}{2*1}=\frac{2+4\sqrt{91}}{2} $
| X60=y | | F(n)=7n-2 | | 2(x-4=18) | | X=-60+2x | | 2(x-4=18 | | u+6+7u=62 | | 4+6+7u=62 | | 2x+14=4x+14 | | 46.8=-3.6s | | 6.8=x-4.4 | | a-6.9=-2.8 | | 2+14=8y | | x4/9=8/45 | | -23.4=3.9b | | 10/x=6/3x+4 | | 6a+1=2a+9 | | u+5+7u=61 | | 5c-6=7c | | D^4-2D^2+4y=0 | | X+10+2x-50=120 | | -4+2(4s+1)=125 | | 2x—18=x+4 | | 4y-4y-15y=0 | | 4(2x-6)-12=-100 | | -3(5x+7)+10x=34 | | 3x+x=520 | | 16d2=4d | | 16d=4d | | 6.3±1.4=h | | 4x+29=-9(x+4) | | -5(y-9)=4y+18 | | 125=60s2 |